Selección de Resúmenes de Menopausia
نویسنده
چکیده
Eur J Endocrinol. 2016 Nov 11. pii: EJE-16-0583. [Epub ahead of print] Expression of microRNAs that regulate bone turnover in the serum of postmenopausal women with low bone mass and vertebral fractures. Yavropoulou MP, Anastasilakis A, Makras P, Tsalikakis D, Grammatiki M, Yovos JG. Circulating microRNAs (miRs) are currently being investigated as novel biomarkers for osteoporosis and osteoporotic fractures. The aim of this study was to investigate serum levels of specific microRNAs, known regulators of bone metabolism, in postmenopausal women with low bone mass and with or without vertebral fractures (VFs). METHODS: For the analysis, 14 miRs were isolated from the serum of 35 postmenopausal women with low bone mass and with at least one moderate VF and 35 postmenopausal women with low bone mass without fractures. Τhirty postmenopausal women with normal BMD values and no history of fractures served as controls. Main outcome parameters were changes in the expression of selected miRs in the serum of patient population and compared with controls. RESULTS: From the 14 miRs that were selected we identified 5 miRs, namely miR-21-5p, miR-23a, miR-29a-3p, miR-124-3p, and miR-2861 that were significantly deregulated in the serum of patients with low bone mass compared with controls. Serum miR-124 and miR-2861 were significantly higher, while miR-21, miR-23 and miR-29 were lower in patients compared with controls. In a sub-group analysis of the patient population the expression of miR-21-5p, was significantly lower among osteoporotic/osteopenic women with VFs, showing 66% sensitivity and 77% specificity in distinguishing women with a vertebral fracture. CONCLUSION: This study identifies a differential expression pattern of miR-21-5p in the serum of women with low BMD and VFs.
منابع مشابه
ABSTRACT OF PhD THESIS Automatic Semantic Role Labeling using Selectional Preferences with Very Large Corpora Determinación Automática de Roles Semánticos usando Preferencias de Selección sobre Corpus muy Grandes
OF PhD THESIS Automatic Semantic Role Labeling using Selectional Preferences with Very Large Corpora Determinación Automática de Roles Semánticos usando Preferencias de Selección sobre Corpus muy Grandes Graduated: Hiram Calvo Center for Research in Computing (CIC) National Polytechnic Institute (IPN) Mexico City, Mexico, 07738
متن کاملSelección de Prototipos Basada en Conjuntos Rugosos Difusos
En este trabajo abordamos uno de los principales problemas de k vecinos más cercanos (kNN): su sensibilidad al ruido. Llevamos a cabo Selección de Prototipos (SP), es decir, eliminamos instancias ruidosas para mejorar la calidad de la clasificación de k vecinos más cercanos. Concretamente, basándonos en un método existente de selección de instancias basada en conjuntos rugosos difusos, construi...
متن کاملHormonal replacement and cardiovascular disease: a guideline against the evidence.
Correspondencia: Flávio Danni Fuchs • Serviço de Cardiologia, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90.035-903, Porto Alegre, RS Brasil E-mail: [email protected] Artículo recibido el 06/09/08, revisado recibido el 20/10/08; aceptado el 23/10/08. Palabras clave Enfermedades cardiovasculares / prevención y control, climaterio, menopausia, terapia de reposición hormonal. ...
متن کاملA harmony search algorithm for clustering with feature selection Un algoritmo de búsqueda armónica para clustering con selección de características
This paper presents a new clustering algorithm, called IHSK, with feature selection in a linear order of complexity. The algorithm is based on the combination of the harmony search and K-means algorithms. Feature selection uses both the concept of variability and a heuristic method that penalizes the presence of dimensions with a low probability of contributing to the current solution. The algo...
متن کاملSelecting the Slack Variable in Mixture Experiment Selección de la variable de holgura en experimentos para mezclas
A mixture experiment is one where the response depends only on the relative proportions of the ingredients present in the mixture. There are different regression models used to analyze mixture experiments, such as Scheffé model, slack-variable model, and Kronecker model. Interestingly, slack-variable model is the most popular one among practitioners, especially formulators. In this paper, I wan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016